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Quantum corrected geodesics
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We compute the graviton-induced corrections to the trajectory of a classical test particle. We show that the
motion of the test particle is governed by an effective action given by the expectation value~with respect to the
graviton state! of the classical action. We analyze the quantum corrected equations of motion for the test
particle in two particular backgrounds: a Robertson Walker spacetime and a (211)-dimensional spacetime
with rotational symmetry. In both cases we show that the quantum corrected trajectory is not a geodesic of the
background metric.@S0556-2821~99!09118-3#

PACS number~s!: 04.60.2m, 11.15.Kc
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I. INTRODUCTION

A full quantum theory of gravity is still out of reach
However, in situations where the spacetime curvature is w
below Planck’s curvature, it is possible to compute so
quantum gravity effects. Indeed, metric fluctuations can
quantized using standard methods. The nonrenormalizab
of the resulting quantum field theory is not an impedime
for making meaningful quantum corrections. The key po
is to consider general relativity as an effective field theo
@1#.

Although the leading long distance quantum correctio
are expected to be too small in realistic situations, the an
sis of general relativity as an effective field theory is of co
ceptual interest. Moreover, tiny but measurable quan
gravity effects could show up when measuring the decoh
ence of wavepackets of a nonrelativistic particle subjecte
the gravitational potential@2#. On the other hand, recen
speculations raise the length scale relevant for quantum g
ity effects from Planck length to a TeV scale@3#. In this
situation, the effects of metric fluctuations could be easie
observe.

In the context of effective field theories, it is in princip
possible to compute an effective action and effective fi
equations for the mean value of the spacetime metric.
effective field equations~known as semiclassical Einste
equations or back reaction equations! include the back reac
tion of quantum matter fields and of the metric fluctuatio
on the spacetime metric. These equations should be the s
ing point to investigate interesting physical problems lik
for example, the dynamical evolution of a black hole geo
etry taking into account the evaporation process.

The back reaction equations have been investigated
several authors in the last twenty years or so@4#. However,
due to the complexity of the problem~and also to the non
renormalizability of the theory! most works considered sca
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lar or spinor quantum matter fields, but the graviton con
bution was simply omitted.

It is in general stressed that the graviton effects should
similar to those of a couple of massless, minimally coup
scalar fields. While this is true at the level of the back re
tion equations, there is an important physical difference t
has been pointed only recently@5#. When metric fluctuations
are taken into account, the background geometry~i.e. the
metric that solves the back reaction equations!, turns out to
be nonphysical. The reason is the following: any classica
quantum device used to measure the spacetime geom
will also feel the graviton fluctuations. As the coupling b
tween the device and the metric is nonlinear, the device
not measure the background geometry, which therefore is
the relevant physical quantity to compute. In particular,
Ref. @5# we have shown that, working in the Newtonian a
proximation, the trajectory of a classical test particle is no
geodesic of the background metric. Instead its motion is
termined by a quantum corrected equation that takes
account its coupling to the gravitons. Moreover, while t
back reaction equations and their solutions depend on
gauge fixing of the gravitons, this dependence cancels ou
the quantum corrected equation of motion for the test p
ticle.

The aim of this paper is to analyze the effect of the gra
tons on the motion of a test particle beyond the Newton
approximation. In order to avoid technical complications,
will assume we know a solution to the back reaction eq
tions, and will focus only on the departure of the test pa
cle’s equation of motion from the geodesic equation of
background metric. Moreover, we will consider mode
where it is easy to fix completely the gauge of the gravito
and quantize the theory by taking into account the remain
degrees of freedom.

The paper is organized as follows. In Sec. II we prove t
the effective action that governs the motion of the test p
ticle is the mean value of the classical action. In Sec. III
consider Robertson Walker universes. We first briefly d
scribe how to quantize the metric fluctuations in terms
massless scalar fields. Then we compute the quantum co
©1999 The American Physical Society18-1



co
we
In

o

nd
ld

tio
th
s
a

ric
fo
h

t
s

r

te

el

-
ug

c-

icl

v

t

o
-

at

e,

for
e-
k-

s,

at
tion
the
in
e
as

ons

ions

qua-

rive
ar-

sal-
ill
-

le,

ith
n-
nd
icle

nd

ton
um
e
ion

s

DIEGO A. R. DALVIT AND FRANCISCO D. MAZZITELLI PHYSICAL REVIEW D 60 084018
tions to the geodesic equation and solve the quantum
rected equations of motion perturbatively. In particular,
find the graviton corrections to the cosmological redshift.
Sec. IV we consider three-dimensional gravity coupled t
Maxwell field. Following Ref.@6#, we first show that this
model is exactly soluble: one can fully fix the gauge a
show that the degrees of freedom reside in the Maxwell fie
Then we compute the quantum corrected equation of mo
for the test particle. We show that, even in regions where
background metric is locally flat, the trajectory of the te
particle is not a straight line. Section V contains our fin
remarks.

II. EFFECTIVE ACTION FOR A TEST PARTICLE

In this section we will show that, when quantum met
fluctuations are taken into account, the effective action
the test particle is the mean value of its classical action. T
result is summarized in Eq.~5! below ~the reader may wan
to accept this as a reasonable assumption and skip this
tion!.

Consider pure gravity described by Einstein-Hilbe
action1 SG5(2/k2)*d4xA2gR, where k2532pG, and
imagine that in addition we have some type of matter con
described by an actionSM . The effect of quantum metric
fluctuations can be analyzed with the background fi
method, expanding the whole actionSG1SM around a back-
ground metric asgmn→gmn1khmn , and integrating over the
graviton field hmn to get an effective action for the back
ground metric. In order to fix the gauge one chooses a ga
fixing function xm@g,h#, a gauge-fixing actionSgf@g,h#5
2(1/2)*d4xA2gxmgmnxn, and the corresponding ghost a
tion Sgh.

Imagine that in addition we have a classical test part
that moves in the above background metric and we wish
study the effects of metric fluctuations on it. We couple gra
ity to the particle by means of the standard actionSm@x#5
2m*A2gmndxmdxn, wherexm denotes the path of this tes
particle. The complete effective actionSeff for the back-
ground metricgmn and for the test particlem is obtained by
integrating the whole actionS[SG1SM1Sgf1Sm1Sgh over
the graviton and ghost fields. To evaluate it in the one lo
approximation we first expandSup to second order in gravi
tons. The second order term reads

S(2)5E d4yA2ghmnFmnrshrs2E d4yA2ghmnmmnrshrs

~1!

whereF̂[Fmnrs is a second order differential operator th
depends on the background metric, andmmnrs is a tensor
depending on the position and velocity of the test particl

1Our metric has signature (2111) and the curvature tensor i
defined asR

• nab
m 5]aGnb

m 2 . . . , Rab5R
• amb

m and R5gabRab .
We use units\5c51.
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mk2

8 E dtd4
„y2x~t!…ẋmẋnẋrẋs. ~2!

There is also a second order term in ghost fields, that
gauge-fixing functions linear in the metric fluctuations d
couple from the gravitons, and couple only to the bac
ground metric.

The result of the path integral is the classical actionSclas
5SG1SM1Sm plus the sum of two functional determinant

Seff5Sclas1
i

2
Tr ln~ F̂2m̂!2 iTr lnĜ ~3!

where Ĝ is also a second order differential operator th
arises from integrating over ghosts. Once the effective ac
is evaluated, one can derive the equations of motion for
background metricgmn , the so-called semiclassical Einste
equations, i.e.dSeff /dgmn50. To solve these equations on
can discard all contributions coming from the test particle,
they are vanishingly small. As they stand, these equati
~obtained from the standardin-out effective action! are nei-
ther real nor causal. In order to get real and causal equat
of motion for the background metric, thein-in effective ac-
tion must be evaluated@7#. Alternatively, one can take twice
the real and causal part of the propagators in thein-out field
equations. In both ways one gets semiclassical Einstein e
tions suitable for initial value problems.

From the effective action given above one can also de
the quantum corrected equation of motion for the test p
ticle, i.e. dSeff /dxr50, which will be our main concern in
what follows. The same comments about reality and cau
ity apply to this equation of motion. In this paper we w
work with the usualin-out effective action and use the ad
equate propagators in the quantum corrected equations.

In general it is extremely complicated, if not impossib
to work out the functional traces in Eq.~3!, so several ap-
proximation methods have been developed to deal w
them. However, in this paper we will only focus on the qua
tum effects of the coupling between the test particle a
gravitons. We can make use of the fact that the test part
has a small mass, so we can expand Eq.~3! in powers ofm
and just keep the leading contribution. In this way we fi
that the whole effective action reads

Seff@gmn ,x#5Sclas1
i

2
Tr lnF̂2 iTr ln Ĝ

2E d4xA2g^hmnmmnrshrs&. ~4!

The expectation value is taken with respect to the gravi
state. The effective action for the test particle will be the s
of the classical termSm@x# and this last term, so that w
conclude that in fact that effective action is the expectat
value of the classical one

Seff@x#5^Sm@x#&. ~5!
8-2
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QUANTUM CORRECTED GEODESICS PHYSICAL REVIEW D60 084018
It is important to stress that due to the nonlinear nature of
coupling between gravity and test particle, the effective L
grangian is not the same as the classical lagrangian evalu
in the expectation value for the particle’s path.

The calculation described so far preserves the covaria
in the background metricgmn . Alternatively, one can fully
fix the gauge of the quantum fluctuations of the geome
and quantize the remaining degrees of freedom. As can
easily proved, the argument leading to Eq.~5! remains un-
changed, since it relies only on the fact that the test part
mass is small.

III. QUANTUM CORRECTIONS TO GEODESICS
FOR FLAT ROBERTSON-WALKER METRICS

A. Noncovariant quantization

In this subsection we briefly review the noncovaria
method of quantization for flat Robertson-Walker~RW! uni-
verses. The metrics we are dealing with are therefore of
form ds252dt21a2(t)dx2, wherea(t) is the expansion co
efficient. The action for the matter content in RW metrics h
the form

SM5E d4xA2gF1

2
~r1p!umungmn1

1

2
~r13p!G ~6!

whereum, r andp and the fluid’s four-velocity, density an
pressure, respectively. The associated classical Eins
equations are

Rmn52
1

2 S Tmn2
1

2
gmnTl

lD ~7!

where the classical energy-momentum tensor isTmn5(r
1p)umun2pgmn .

There are different ways to quantize the theory. One
based on the background field method, which was descr
above. Here we follow another quantization procedure t
starts from the classical theory of perturbations in RW m
rics, developed in@8#. One considers perturbations such th
dr5dp5dum50, and metric perturbationshmn that satisfy
umhmn50, and further imposes the gauge conditionsh ;n

mn

50. Finally one ends up with only two independent comp
nents of the metric,h1 andh3 , which can be expressed i
terms of the original components ofhmn , and that corre-
spond to the two polarizations of a gravitational wave. T
above conditions on the metric imply thath0m50 and a

transversality condition¹̃ jh
i j 50, where¹̃ j denotes the co-

variant derivative with respect to the spatial part of the m
ric. Both componentsh1 and h3 , and alsohi

j , verify the
field equation for a minimally coupled massless scalar fi
in RW metrics

hf52a23
]

]t S a3
]

]t
f D1¹2f50. ~8!

To quantize we use the noncovariant quantization pro
dure of @9,10#. First one writes the second order term of t
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action SG1SM in terms of the two independent degrees
freedom of the field,h1 andh3

SG1M
(2) 5

1

2E d4xA2g@]mh1~x!]mh1~x!

1]mh3~x!]mh3~x!# ~9!

and then imposes equal-time canonical conmutation relat
for the two scalar fields@ha(x,t),Pb(x8,t)#5 idabd(x2x8),
wherea,b51,3 andPa is the canonical momentum con
jugate toha . This quantization procedure is equivalent
that for the individual modeshi

j . Instead of using canonica
quantization, one can also do path integrals. One expand
action in terms of the individual modeshi

j ~or in terms ofh1

andh3) and integrates over them in order to get an effect
action for the background metric. For the one loop effect
action one needs the second order term of the expansio
the action in terms of metric perturbations, namelySG1M

(2)

51/2*d4yA2ghj
i hhi

j , where h denotes the scala
D’Alambertian operator. Finally one has to evaluate t
functional determinant of this differential operator.

B. Quantum corrected geodesic equation

Having summed up how to quantize metric perturbatio
in RW universes, let us see how such quantum metric fl
tuations affect the motion of a classical test particle. As
scribed in the previous section, the effective action for
test particle is the expectation value of the classical act
namely

Seff@x#52mE A2gmn~x!dxmdxn

2
mk2

8 E dt^hi j ~x!hlm~x!&ẋi ẋ j ẋl ẋm ~10!

where the dot denotes the derivative with respect tot. The
graviton two-point function can be expressed in terms of
scalar two-point function̂f(x)f(x8)& as

^hi j ~x!hlm~x8!&52
1

3
a2~ t !a2~ t8!S d i j d lm2

3

2
d i l d jm

2
3

2
d imd j l D ^f~x!f~x8!&. ~11!

We recall that in these expressions the metricgmn is the
solution to the semiclassical Einstein equations that foll
from quantizing gravity in a RW universe. In the followin
we will assume that these equations have been solved
that the quantum corrected expansion factora(t) has been
found.

The geodesic equation for the test particle follows fro
dSeff@x#/dxr50. For the temporal component we get

d2t

dt2
1a~ t !a8~ t !S dx

dt D 2

2
k2

8
ẋi ẋ j ẋl ẋm

]

]t
Gi j lm@x~ t !#50

~12!
8-3
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DIEGO A. R. DALVIT AND FRANCISCO D. MAZZITELLI PHYSICAL REVIEW D 60 084018
wherea8(t)[da/dt andGi jlm@x(t)# is the coincident limit
of the graviton two-point function, evaluated along t
trayectory of the particle. For then-th spatial componen
(n51,2,3) we obtain

d

dt S a2~ t !
dxn

dt
2

k2

2
Gi jkl @x~ t !#d inẋ j ẋkẋl D50. ~13!

Now let us solve Eqs.~12,13! for dx/dt anddt/dt. From
Eq. ~13! we see that the expression in parentheses is c
served. These conserved three quantities reflect the sp
translational invariance of RW metric, which is preserv
upon the quantization procedure. Therefore

a2~ t !
dxn

dt
2

k2

2
Gi jkl @x~ t !#d inẋ j ẋkẋl5an ~14!

wherean is a dimensionless constant three-vector that
pends on the initial velocity of the particle. Plugging th
identity into Eq.~12! we find2

dt

dt
5A11a22~ t ! (

n51

3 S an1
k2

2
Gi jkl @x~ t !#d inẋ j ẋkẋl D 2

.

~15!

Now we solve Eqs.~14,15! perturbatively in terms of the
coupling between the test particle and gravitons. Let us
sume that the initial velocity of the test particle is in thex
5x1 direction; i.e.an5adn1. The zeroth order approxima
tion corresponds to neglecting the coupling between the
ticle and gravitons, which results in

dx

dt
5

a

a2~ t !
, ~16!

dt

dt
5A11a2a22~ t !. ~17!

Note that the limiting case of a light ray~null limit ! dx/dt
51/a is obtained whena2a22@1.

When the coupling is taken into account, we see that
particle still moves in the samex direction, and we get

dx

dt
5

a

a2~ t !
S 11

a2k2

3a2~ t !
^f2~ t !& D , ~18!

dt

dt
5A11a2a22~ t !S 11

a4k2

3a4~ t !

^f2~ t !&

11a2a22~ t !
D ~19!

where we expressed the graviton two-point function in ter
of the scalar two-point function asGxxxx(t)5(2/
3)a4(t)^f2(t)&. The speed of the particle results

2This equation also follows from the very definition of the prop
time. Indeed, from 15(dt/dt)22a2(t)(dx/dt)2 we easily get Eq.
~15!.
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5

aa22~ t !

A11a2a22~ t !
S 11

32

3
pG^f2~ t !&

a2a22~ t !

11a2a22~ t !
D .

~20!

This is the main result of this section. It expresses the qu
tum corrections to the velocity of a test particle that moves
a flat Robertson-Walker quantum background. In the n
limit

dx/dt'a21~ t !@11~32/3!pG^f2~ t !&# ~21!

describes the graviton correction to the cosmological r
shift. This expression is valid as long as the quantum corr
tion remains small. Since, as we will shortly see, the tw
point function in the coincident limit is proportional to th
scalar curvature, the quantum correction is proportiona
R/RPlancktimesa2a22. For R/RPlanck!1 it is possible to sat-
isfy both the null limit condition and the smallness of th
quantum correction at the same time, i.e.a2a22@1 and
a2a22(R/RPlanck)!1.

To estimate the effect of this quantum correction on
classical trajectory of the test particle, we first have to eva
ate the two-point function in the coincident limit,^f2(t)&.
As is well known, this coincident limit is divergent, so
renormalization procedure is compelling. In the followin
we will calculate^f2(t)& for particular RW metrics, namely
a(t)5a0eHt ~de Sitter! anda(t)5a0tc.

For de Sitter spacetime, the two-point function not on
has UV problems but also IR ones. However, in the late ti
limit t5t8@H21 it is possible to give an approximate form
for the renormalized function. It was shown by several a
thors @11–14# that the coincident limit grows linearly with
the coordinate time,^f2(t)&'H3t/2p2. Using that k2

}RPlanck
21 and that for de Sitter the curvature is constantR

}H2, we conclude that the quantum correction is prop
tional to (R/RPlanck)F(t), where the function F(t)
5a2Hta0

22e22Ht/(11a2a0
22exp22Ht) decreases exponen

tially for late times. The velocity of the test particle in th
late time limit is therefore given by

dx

dt
5

aa0
22e22Ht

A11a2a0
22e22Ht S 11

16G\H2F~ t !

3pc5 D ~22!

where we have restored units\ andc.
As we pointed out before, the scale factora(t) should be

a solution to the semiclassical Einstein equations. A per
bative solution will be of the forma(t)5aclas(t)1da(t),
aclas being the classical scale factor andda!aclas. It is well
known that the semiclassical Einstein equations admit de
ter solutions @15# a(t)5a0eHt with H5Hclas@1
1g(Hclas

2 /RPlanck)#, g5O(1). Therefore, as long as
Hclas

3 t/RPlanck!1 the correction to the scale factor is given b
da/aclas.g(Hclas

3 t/RPlanck). Replacinga(t)5aclas(t)1da(t)
in Eq. ~22! we obtain, to first order in all quantum correc
tions
8-4
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QUANTUM CORRECTED GEODESICS PHYSICAL REVIEW D60 084018
dx

dt
5

aa0
22e22Hclast

A11a2a0
22e22Hclast

S 11
16G\H2F~ t !

3pc5

2g
21a2aclas

22~ t !

11a2aclas
22~ t !

Hclas
3 t

RPlanck
D ~23!

whereF(t) is to be evaluated with the classical value for t
Hubble parameter. This shows that the quantum correctio
the geodesics coming from the graviton coupling@second
term in Eq.~23!# and the one coming from the semiclassic
Einstein equations~third term! are of the same order of mag
nitude.

Consider now metrics witha(t)5a0tc. Although these
are not solutions to the semiclassical Einstein equation, t
are useful to illustrate the corrections to the geodesics. In
case there are no infrared divergencies. In the Appendix
give some details as to how to evaluate the renormali
two-point function. The result iŝ f2(t)&}t22log(t2m2),
where m is an ~arbitrary! renormalization scale. Since fo
these metrics the curvature isR}t22, we obtain that the
quantum correction also has the form (R/RPlanck)F(t), where
now F(t)5a2a0

22t22clog(t2m2)/(11a2a0
22t22c), which also

decreases for long times. The velocity of the test particle

dx

dt
5

aa0
22t22c

A11a2a0
22t22c S 11

2c~2c21!G\F~ t !

3pc5t2 D .

~24!

As the two-point function is divergent in the coinciden
limit, a counterterm is needed in the effective action E
~10!. The theory is not renormalizable because the coun
term needed is not of the form of the classical action. Inde
the counterterm must have the following schematic fo
A0Rẋ4, whereA0 is a bare constant,R is the Ricci scalar and
ẋ4 denotes contractions of the components of the thr
velocity of the test particle. After absorbing the pole of t
divergence of the two-point function into the bare consta
the finite part of the counterterm readsARẋ4, whereA de-
notes the dressed constant. As usual, this dressed con
must depend on the scalem in such a way that the complet
effective action is independent ofm. In this paper, for sim-
plicitly we have omited the finite part of the counterterm
This can be justified in the following situations. On the o
hand, one can assume that the dressed constant vanish
some particular value of the scalem, which, of course, is an
unnatural assumption. On the other hand, one can trea
theory that describes the dynamics of the test particle a
effective, non-renormalizable theory. As the quantum fl
tuations involve massless particles, in the low energy reg
the finite, nonanalytic part of the quantum correction will
more important than the finite counterterm~see @1# for a
general discussion!. In the particular case we are analyzin
this regime corresponds to the limit log(mt)@1.
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IV. QUANTUM CORRECTIONS TO GEODESICS
IN THREE DIMENSIONAL GRAVITY

A. Three dimensional general relativity

In this section we will consider (211) gravity coupled to
Maxwell fields. Under the assumption of rotational symm
try, this model is exactly soluble. Moreover, it is possible
associate a well defined quantum operator to the space
metric. Therefore, it is particularly useful to analyze the
fective action for a test particle and the corrections to
geodesics. In this subsection we will follow closely Re
@6,16#.

At the classical level, the theory is governed by t
Einstein-Maxwell equations, which read

Rab58pG¹af¹bf, ~25!

gab¹a¹bf50 ~26!

where the electromagnetic field has been written in terms
a scalar field asFab5eabc¹

cf. Assuming rotational symme
try, the above equations can be easily solved. The metric
be written as

gabdxadxb5eGG(r ,t)@2dt21dr2#1r 2du2. ~27!

Moreover, the scalar field decouples from the metric

gab¹a¹bf50→~2] t
21] r

2!f50. ~28!

Therefore, one can solve the (111) Klein Gordon equation
for f and then determineG from the Einstein equation. The
result is

G~r ,t !5
1

2E0

r

dr8 r 8 @~] tf!21~] r 8f!2#. ~29!

Note that, asr→`, G tends to a constant valueG(`,t)
5H0. The metric becomes locally flat with a deficit ang
2p(12e2GH0/2).

To quantize the theory, one can promotef to an operator
f̂ describing a free quantum scalar field in (111) dimen-
sions. The spacetime metric is a secondary operator that
be expressed in terms off̂ as

ĝrr 52ĝtt5eGĜ ~30!

whereĜ is the operator defined by Eq.~29! with f→f̂.
For simplicity in what follows we will consider the metri

operator in the asymptotic regionr→`, where the operator

Ĝ is time independent. For a given coherent state of
scalar field„denoted byuF& and peaked around a classic
configurationF(r ,t)…, it is easy to show that

^Fuf̂uF&5F~r ,t !,

^Fuĝrr uF&5expF 1

\E0

`

dwuF~w!u2~eG\w21!G . ~31!
8-5
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For sufficiently low frequencies~i.e. when the Fourier
transform of the classical configuration is peaked aroun
low frequency!, the mean value of the metric operator can
approximated by

^Fuĝrr uF&5grr S 11\
G2

2 E
0

`

dww2 uF~w!u2D . ~32!

The first term is the value of the metric we would obta
from the classical field equations for a classical scalar fi
configuration given byF(r ,t). The second term represents
small quantum correction. As in the classical case, for
→` the mean value of the metric describes a locally
spacetime, but with a quantum corrected deficit angle.

B. Effective action for a test particle

According to our general discussion in Sec. II, the effe
tive action for a test particle moving in th
(211)-dimensional spacetime is given by

Seff@x#5^Sm@x#&52mK E dtAeGĜ~12 ṙ 2!2r 2u̇2L
~33!

where the mean value is taken with respect to the cohe
stateuF&. Here a dot denotes derivative with respect tot. As
in the previous section we will consider only the asympto
region where the metric operator is time independent.

We write the metric operator aseGĜ5^eGĜ&1D̂. The ef-
fective Lagrangian then becomes

Leff52mL̄KAF11
D̂~12 ṙ 2!

L̄2 G L ~34!

whereL̄ is proportional to the classical Lagrangian evalua
in the mean value of the metric

L̄5A^eGĜ&~12 ṙ 2!2r 2u̇2. ~35!

Note that, after a redefinition of the angular variableu

→A^eGĜ&u, L̄ becomes proportional to the Lagrangian
the test particle in a locally flat spacetime. The deficit an

is given by 2p(12A^eGĜ&).
Assuming that the quantum fluctuations around the m

value are small3 we get

Leff52mL̄F12
1

8

~12 ṙ 2!2D2

L̄4 G ~36!

whereD25^D̂2&5^(eGĜ2^eGĜ&)2&. The above equation is
the starting point to describe the quantum corrections to
trajectory of the test particle.

Let us first consider a nonrelativistic motion of the pa
ticle. In this situation we have

3This is not always the case. See Ref.@16#.
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L̄.A^eGĜ&F12
ṙ 2

2
2

r 2u̇2

2^eGĜ&
G . ~37!

Therefore, the effective Lagrangian can be approximated

Leff.2mA^eGĜ&F12
1

8 S Dg

g D 2GF12
ṙ 2

2
2

r 2u̇2

2^eGĜ&

3X11
1

2 S Dg

g D 2CG ~38!

where (Dg/g)25D2/^eGĜ&2.
We can see from Eq.~38! that in this nonrelativistic limit

the effective Lagrangian has, up to an irrelevant const
factor, the same form asL̄, but with a different deficit angle
Indeed, after the redefinition of the angular variableu

→A^eGĜ&@12 1
4 (Dg/g)2#u, the effective Lagrangian be

comes proportional to the flat spacetime Lagrangian. The
fore the trajectories will be straight lines in a locally fl
spacetime. However, the global properties of the trajecto
will be different from the ones obtained with the mean val
of the metric^eGĜ&, since the deficit angle for the effectiv

Lagrangian is now given by 2p$12A^eGĜ&@1
2 1

4 (Dg/g)2#%.
In the general case~a relativistic particle!, the situation is

different. Indeed, one can prove that it is not possible
redefineu in order to bringLeff @Eq. ~36!# to a flat spacetime
form. As a consequence, although the mean value of
metric is locally flat, the test particle ‘‘sees’’ a much mo
complex geometry.

The conclusion of this section is that, again, the trajec
ries of the test particle do not coincide with the geodesics
the mean value of the metric.

V. FINAL REMARKS

Let us summarize the new results contained in this pa
We have computed the quantum corrections to the trajec
of a test particle by taking into account the quantum fluct
tions of the spacetime metric. We have analyzed two part
lar models where it is easy to fix completely the gauge of
quantum fluctuations and quantize the remaining degree
freedom.

For a Robertson-Walker spacetime, the fluctuations of
metric can be described by two massless, minimally coup
scalar fields. The quantum corrected trajectory has the s
symmetries as the classical trajectory. However, it contain
quantum correction proportional to the graviton two-po
function and to the initial velocity of the test particle. Th
additional term produces, in particular, a quantum correct
to the gravitational redshift.

Let us assume that we solve the back reaction equat
perturbatively and find a solutiona(t)5ac(t)1da(t), where
ac(t) is the classical scale factor. Had we neglected the c
pling between gravitons and test particle, we would ha
concluded that the test particle’s trajectories coincide w
the geodesics of the metrica(t)5ac(t)1da(t). However,
8-6
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this coupling induces an additional correction to the equa
of motion that is of the same order of magnitude as the
produced byda(t) ~we have shown this in the particular ca
of a de Sitter solution and, in a previous paper@5#, in the
Newtonian approximation!. As a consequence, it is meanin
less to computeda(t) and neglect the graviton effects on th
motion of the particle, which is the physical observable.

An interesting feature of our result is that the quantu
corrections to the geodesic depend on the velocity of the
particle in such a way that one cannot define an ‘‘effect
metric’’ for the trajectory, i.e. a metric such that its geodes
coincide with all the quantum corrected trajectories. It
worth to note that if one tries to define observationally
‘‘effective spacetime curvature’’ through a geodesic dev
tion equation, this effective curvature will be dependent
the initial four velocity of the geodesics under considerati
The effective metric and effective scale factor we are talk
about here should be looked upon as average quantities,
integration of the graviton fluctuations.

In the case of three-dimensional general relativity, th
are no propagating degrees of freedom associated with
geometry. At the classical level one can make the degree
freedom to reside in the matter field. At the quantum lev
the operator associated with the metric can be written
terms of the matter field operator.

In this model, given a quantum state of the matter fields
is easy to compute the mean value of the metric and of
function of it. In particular, we computed the mean value
the Lagrangian for a test particle. We have shown that, e
in the asymptotic region, where both the classical metric
the mean value of the quantum metric operator describe
cally flat spacetimes, the test particle ‘‘feels’’ the quantu
fluctuations and the trajectory is not a straight line.

Now we would like to comment about related works. T
our knowledge, the fact that the mean value of the metri
not enough to describe the spacetime geometry when
graviton contribution is taken into account, was first point
out in Ref.@17#. It was stressed there that one can assign
effective metric to a given observableO(gmn), through the
identity

gmn
eff 5O 21^O~gmn!&. ~39!

The effective metric obviously depends onO. We agree with
this point of view. Indeed, from our results it is easy
illustrate this fact. Consider for example the quantum c
rected velocity of the test particle given in Eq.~20!. Taking
into account the classical result for the velocity, one c
introduce an ‘‘effective scale factor’’ through the identity

aaeff
22~ t !

A11a2aeff
22~ t !

5
aa22~ t !

A11a2a22~ t !

3S 11
32

3
pG^f2~ t !&

a2a22~ t !

11a2a22~ t !
D .

~40!

This gives
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3
pG^f2~ t !&

a2a22~ t !

11a2a22~ t !
.

The ‘‘effective scale factor’’ depends on the initial veloci
of the particle.

In Ref. @18# the authors analyzed the graviton induc
fluctuations of horizons in Robertson Walker and Schwar
child spacetimes. The analysis was based on the study o
effects of gravitons on~nearly! null geodesics. They pointed
out that due to the interaction with the fluctuations of t
metric, there are two effects on the trajectories of photo
the mean geodesic will deviate from the classical geode
and there will be stochastic fluctuations around the m
value. They studied the stochastic fluctuations and negle
the deviation of the mean value. In this sense, our work
complementary to Ref.@18#, since we computed the mea
value corrections. In our framework, the stochastic fluct
tions could be analyzed by using the closed time path
malism to compute the effective action for the test particle
can be shown that the imaginary part of this closed time p
effective action introduces a noise term in the equation
motion ~similar ideas have been applied to the semiclass
Einstein equations, see for example@19#!.

In this paper we fixed completely the gauge of the me
fluctuations before quantization. Alternatively, one could u
the covariant method described in Sec. II. We showed i
previous work@5# that the solution to the back reaction equ
tion and the quantum corrections to the geodesics are
dependent on the gauge fixing procedure. In the Newton
approximation, this dependence cancels when computing
trajectory of the test particle. Whether this is true or n
beyond the Newtonian approximation is an open ques
that will be addressed in a forthcoming paper.
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APPENDIX A

In this appendix we calculate the renormalized two-po
function ^f(x)f(x8)& in the coincide limit x8→x for a
massless minimally coupled scalar field in flat Roberto
Walker metrics witha(t)5a0tc. Throughout this appendix
we work in conformal time,h5@a0(12c)#21t12c. The met-
ric reads ds25C(h)(2dh21dx2) where C(h)5a2(t)
5a0

2/(12c)(12c)2c/(12c)h2c/(12c).
The two-point function we wish to evaluate is basica

the Hadamard functionD (1)5^$f(x),f(x8)%&. By means of
the point-splitting technique, we separate the pointsx,x8
only in their temporal componentDh[h2h85e→0. The
Hadamard function then takes the form@20#
8-7
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D (1)~x,x8!52
C21/2~h!C21/2~h8!

2p2Dh2

2
R

24p2 F1

2
logU e2

Ch2U1g1
1

2
cS 3

2
1n D

1
1

2
cS 3

2
2n D G1

R

48p2
1O~e2! ~A1!

wheren5u123cu/(2u12cu), g is Euler’s constant andc is
Euler’s function. The first term on the right is the express
for D (1) in the conformally coupled case, which can also
expanded in powers ofe

2
C21/2~h!C21/2~h8!

2p2Dh2
52

1

8p2e2S

1
1

24p2 FRab

tatb

S
2

1

6
RG1O~e2!

~A2!

where tm is a unit vector that parametrizes the direction
splitting andS5tmtm.
D

08401
n
e

f

To renormalize we substract the second order adiab
expansion for the Hadamard function, namely

Dad
(1)~h,h8!52

1

8p2e2S
2

R

24p2 F1

2
log~m2e2!1gG

1
1

24p2
Rab

tatb

S
1O~e2! ~A3!

where m is an arbitrary scale with dimensions of energ
Finally

D ren
(1)~x,x!5 lim

e→0
„D (1)~h,h8!2Dad

(1)~h,h8!…

5
R

48p2
log~Cm2h2! ~A4!

all constants having been absorbed into a redefinition ofm.
We can now go back to coordinate time, and on using t
for these metrics the scalar curvature isR56c(2c21)t22,
we get the final result

^f2~ t !&5
6c~2c21!

96p2
t22 log~ t2m2!.
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